1	PGR NOTE
2	
3	Microsatellite markers for identifying hybrids of the damselflies Calopteryx splendens
4	and C. virgo
5	
6	Knott KE^1 , Keränen I ¹ , Kuitunen K ¹ , and Wellenreuther M ²
7	
8	¹ Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35,
9	FIN-40014 Jyväskylä, Finland
10	² Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
11	
12	Keywords: Odonata, Calopterygidae, hybridization, speciation, population genetics
13	
14	Correspondence: Emily Knott, Department of Biological and Environmental Science,
15	University of Jyväskylä, PO Box 35, FIN-40014 Jyväskylä, Finland: Fax: +358 14 2602321;
16	E-mail: <u>emily.knott@jyu.fi</u>
17	
18	Running title: Detecting hybrids of Calopteryx species
19	
20	Abstract
21	The damselflies Calopteryx splendens and C. virgo hybridize in nature. We developed
22	nineteen microsatellite loci for molecular identification of hybrids. Lack of shared alleles at
23	several loci allowed unquestionable identification. Seventeen loci are polymorphic in at least
24	one of the target species, broadening the utility of the loci for population genetic studies.

25

Calopteryx splendens (banded demoiselle) and *C. virgo* (beautiful demoiselle) are
riverine species with largely overlapping distributions in Europe (Askew 1988). Males are
distinguished by their wing coloration, but females are cryptic. The two species hybridize in
nature (Tynkkynen et al. 2008, Keränen 2009), but identifying hybrid individuals based on
morphology is difficult. We developed molecular tools to identify F₁-hybrids and possible
introgression between these species.

32 Microsatellite-enriched genomic libraries were prepared for each species, as described 33 for Podarcis gaigeae and Ischnura elegans by Wellenreuther et al. (2009) and Molecular 34 Ecology Resources Primer Development Consortium (2010). In short, genomic DNA was 35 digested, ligated and then amplified with specific primers. PCR products were hybridized to 36 simple sequence repeat oligonucleotides with 100 pmol of the following biotinylated probes: 37 (AG)₂₁, (ATT)₆, (AT)₇, (AAG)₈ and (AAAT)₇. Microsatellite containing fragments were 38 isolated using magnetic beads (Roche Diagnostics), cloned, and finally sequenced. Fifty six 39 inserts of C. splendens and 40 of C. virgo were sequenced. Of these, 37 and 18, respectively, 40 contained microsatellite motifs.

41 Primers were designed to flanking regions of the loci using Primer3 (Rozen & Skaletsky 2000). All loci were tested with samples of C. splendens and C. virgo collected 42 from two localities where the species coexist: Pitkäjoki, Central Finland (62°7 N, 26°3 E) and 43 44 Turkkijoki, Eastern Finland (62°2'N, 20°10'E). DNA was extracted from *Calopteryx* legs 45 using Qiagen chemistry and a KingFisher (ThermoScientific) magnetic particle processor. 46 Amplification was tested with two MgCl₂ concentrations (3 or 5mM) and two annealing temperatures (T_a, 56 or 58°C) using the labeling and thermocycling protocol of Schuelke 47 48 (2000). Preferred T_a and MgCl₂ concentrations for each locus are listed in Table 1. Other

2

49	reagent concentrations were: 1X Biotools MgCl ₂ Free Reaction Buffer, 0.2 mM dNTPs
50	(Fermentas), 8 pmol of each reverse and labeled M13(-21) primer, 2 pmol of the tailed
51	forward primer (see Table 1 for exception), 1 U Biotools Taq DNA polymerase and
52	approximately 50 ng template DNA. All reactions were performed with a BioRad c1000
53	thermocycler. Products were separated using an ABI 3130xl BioAnalyzer and visualized with
54	GeneMapper software v.3.7 (Both Applied Biosystems).
55	Twenty-one potential loci isolated from C. splendens and ten potential loci isolated
56	from C. virgo were tested with 71% and 40% success, respectively. For four of the loci (Cs31,
57	Cs34, Cs60, Cs181) amplification was successful in only C. splendens. The others amplified
58	in both species, and DNA sequencing confirmed that loci were indeed homologous (data on
59	request).
60	Polymorphism per locus was low (2-5 alleles) for both species. Loci were more often
61	polymorphic in C. splendens than in C. virgo (12 vs. 9 loci), but even monomorphic loci were
62	useful for hybrid identification, since allele sizes of the two species were often distinctively
63	different and shared alleles were either absent or very rare (Table 1).
64	Twenty to 28 individuals of each species from both localities were surveyed, including
65	two individuals (one from each locality) suspected to be hybrids (Keränen 2009). Observed
66	and expected heterozygosities were calculated in GenAlEx 6.4 (Peakall & Smouse 2006)
67	(Table 1). Deviation from Hardy-Weinberg proportions and genotypic equilibrium were tested
68	in Fstat (Goudet 2001). Within samples, all loci displayed Hardy-Weinberg proportions. Loci
69	Cs19 and Cv95 showed significant disequilibrium in one sample (C. splendens from
70	Turkkijoki), otherwise all loci displayed genotypic equilibrium. Null alleles were not
71	suspected, and null allele probabilities calculated in Cervus 3 (Kalinowski et al. 2007) were
72	either negative or very low (less than 0.2).

73	Due to distinct alleles at several loci (e.g. Cs10, Cs104, Cv60), F ₁ -hybrid individuals
74	were easily visualized as heterozygotes possessing both "splendens-" and "virgo-specific"
75	alleles. Other individuals appeared to be "pure" C. splendens or C. virgo. Although we have
76	not identified any introgressed individuals, the possibility of hybrid backcrossing cannot be
77	ruled out, due to the small sample surveyed.
78	The microsatellite loci described here are useful tools for molecular identification of
79	F ₁ -hybrids of <i>Calopteryx splendens</i> and <i>C. virgo</i> . Although the loci are not extremely variable.
80	they can also provide data for studies of population structure within each species.
81	
82	Acknowledgements
83	This work was supported by the Academy of Finland (Postdoctoral Researcher grant to KK
84	and the Centre of Excellence in Evolutionary Research, 2006-2011). MW was supported by a
85	Marie Curie Intra-European Fellowship.
86	
87	References
88	Askew, RR, 1988, The Dragonflies of Europe. Harley Books, Essex, UK. 308 p.
89	
90	Goudet, J, 2001, FSTAT, a program to estimate and test gene diversities and fixation indices
91	(version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html.
92	
93	Kalinowski, ST, Taper, ML & Marshall, TC, 2007, Revising how the computer program
94	CERVUS accommodates genotyping error increases success in paternity assignment.
95	<i>Molecular Ecology</i> 16 : 1099-1006. <u>doi: 10.1111/j.1365-294x.2007.03089.x</u>
96	

97	Keränen, IM, 2009, Frequency of hybridization between Calopteryx splendens and C. virgo:
98	the effect of population parameters and environmental variables. MSc Thesis, University of
99	Jyväskylä. 22 p.
100	
101	Molecular Ecology Resources Primer Development Consortium, 2010, 'Permanent Genetic
102	Resources added to Molecular Ecology Resources Database added 1 December 2009-31
103	January 2010' Molecular Ecology Resources vol10, pp. 576-579.
104	
105	Peakall, R, Smouse, PE, 2006, 'GENALEX 6: genetic analysis in Excel. Population genetic
106	software for teaching and research', Molecular Ecology Notes vol 6, pp. 288-295.
107	
108	Rozen, S & Skaletsky, HJ, 2000, 'Primer3 on the WWW for general users and for biologist
109	programmers', in: S Krawetz S & S Misener (eds) Bioinformatics Methods and Protocols:
110	Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386.
111	
112	Schuelke, M, 2000, 'An economic method for the fluorescent labeling of PCR fragments',
113	Nature Biotechnology vol 18, pp. 233-234.
114	
115	Tynkkynen, K, Grapputo, A, Kotiaho, JS, Rantala, MJ, Väänänen, S & Suhonen, J, 2008,
116	'Hybridization in <i>Calopteryx</i> damselflies: the role of males', <i>Animal Behaviour</i> vol 75, pp.
117	1431-1439.
118	

- 119 Wellenreuther, M, Runemark, A, Svensson, EI, & Hansson, B, 2009, 'Isolation and
- 120 characterization of polymorphic microsatellite loci for the Skyros wall lizard *Podarcis*
- 121 gaigeae (Squamata: Lacertidae)'. *Molecular Ecology Resources* vol 9, pp.1005-1008.

122

123 **Table 1.** Microsatellite loci for identifying hybrids of *Calopteryx splendens* and *C. virgo*. For each, GenBank Accession number, Forward (F)

- 124 and Reverse (R) primer sequences, repeat motif, annealing temperature (T_a), and MgCl₂ concentration used in the labeling PCR reaction are
- 125 listed. For each species, number of alleles detected, their size range and observed (H_o) and expected (H_e) heterozygosity from two sample
- 126 populations are also reported (NA: not applicable; ----: unsuccessful amplification).

				C. splendens			C. virgo			
Locus	*Primer sequences 5' \rightarrow 3'	Repeat Motif	T _a ^o C	No.	**size	H _o , H _e ,	No.	**size	Ho, He,	
GenBank			MgCl ₂	All.	range	P: Pitkäjoki	All.	range	P: Pitkäjoki	
Accession			conc.		(bp)	T:Turkkijoki		(bp)	T:Turkkijoki	
number										
Cs5	F: TACTCCTTTGCCCCTTCCTT	(TG) ₆	56 °C	2	126-	P: 0.148, 0.137	1	132	P: NA	
JF320921	R: GGATTGGATGCACCGATATT		5mM		134	T:0.043, 0.043			T: NA	
Cs7	F: GACGATGAGAGGCACGAGAT	(TG) ₆	58°C	2	173-	P: NA	5	181-	P: 0.722, 0.674	
JF320922	R: CATTCCGGTGACACAGTTTTT		5mM		175	T: 0.261, 0.227		191	T: 0.667, 0.659	
Cs10	F: TGCGTAATCAGTTAAAGCCAAGTCGT	(GA) ₆	58 °C	1	190	P: NA	1	188	P: NA	
JF320923	R: *TCAATCGCAATCGACCGGCTG		3mM			T: NA			T: NA	

Cs19	F: CGAAGAAGGAATCGGTTGTG	$(AC)_8(TC)_5$	56 °C	4	194-	P: 0.462, 0.429	4	180-	P: 0.222, 0.205
JF320924	R: TCCTCAAATCCCCACCAATA		3mM		200	T: 0.304, 0.258		196	T: 0.048, 0.046
Cs31	F: GTTCTGTCGGTGGGACACTT	(AG) ₁₀	58 °C	3	198-	P: 0.417, 0.538			
JF320925	R. TTCTCTAACGCCCCAGTTTG		3mM		202	T: 0.500, 0.375			
Cs34	F: GGGTGAAGTCCACGCAGCGG	(CT) ₈	58 °C	3	151-	P: 0.231, 0.204			
JF320926	R: TTGTGCCTTCCCACTGCTCCA		3mM		157	T: 0.091, 0.088			
Cs52	F: TGCGTTAATGAAACGCAGAG	$(CT)_2CA(CT)_7$	56 °C	3	232-	P: 0.556, 0.419	3	228-	P: 0.211, 0.188
JF320927	R: AGAAGAGACGCAGGCAGTGT		3mM		238	T: 0.304, 0.267		234	T: 0.476, 0.468
Cs54	F: AAGACGCTGTAGCCTTGGAA	(CT) ₅ TT(CT) ₂	56 °C	3	209-	P: 0.231, 0.208	2	215-	P: 0.222, 0.198
JF320928	R. TGGATAAGGTCTCGGGTACG		3mM		225	T: 0.087, 0.083		227	T: 0.095, 0.091
Cs60	F: AAAGAAGTACGCTGAAGAGTAGACG	(AG) ₇	58 °C	2	151-	P: 0.200, 0.241			
JF320929	R: GCGTCCCTTGCTTTTCCT		5mM		153	T: 0.100, 0.180			
Cs66	F: GCAGAAATGCTCAAAGAACT	(CA) ₃ G(CA) ₄	56 °C	2	219-	P: 0.154, 0.142	2	209-	P: 0.188, 0.174
JF320930	R: AATGGAGGCTACCGAAGTAT		3mM		231	T: 0.043, 0.043		221	T: NA
Cs104 JF320931	F: TCCGCCTCCATCTCCCGGAT	(CA) ₇	58 °C	3	180-	P: 0.192, 0.178	1	176	P: NA

	R: TGAGGGTTGCTTGCTGCGGG		3mM		184	T: NA			T: NA
Cs160 JF320932	F: ACCCCGGCTCGGATTGGCTT	(GA) ₈	58°C	2	151-	P: 0.111, 0.105	1	151	P: NA
51 520752	R: CCGGTTCATGTCACTAGCAGAACG		3mM		153	T: 0.043, 0.043			T: NA
Cs179	F: TTGGGAGCGAGGGGGGATTGC	(GA) ₅ TA(GA) ₂	58 °C	3	212-	P: 0.037, 0.036	2	218-	P: 0.053, 0.051
JF320933	R: CCCAGTTGCCCCCGAAATGGT		3mM		226	T: 0.043, 0.043		226	T: NA
Cs181	F: CCTCGCGATGCCTTTACTT	(GA) ₈	56 °C	1	228	P: NA			
JF320934	R: TCACTGGGAATTTGTTGCAC		3mM			T: NA			
Cs186	F: CCCCAACCCACCTTTATCTT	(CT) ₁₁	56 °C	3	219-	P: 0.593, 0.586	1	225	P: NA
JF320935	R: TGGACGACCTGAAAATGGAT		3mM		231	T: 0.500, 0.505			T: NA
Cv7	F: TTATGGGGTGGAATGAGAGC	(GT) ₇	58 °C	4	348-	P: 0.538, 0.554	4	374-	P: 0.632, 0.608
JF320936	R: GAATGGCACTGCACAAAGAA		5mM		372	T: 0.565, 0.417		380	T: 0.550, 0.476
Cv48	F: ATGCTTTGCCCTGATTTTTG	(CA) ₇	58 °C	2	203-	P: NA	3	197-	P: 0.824, 0.507
JF320937	R: TTTTAGGCGTGCTCATGTTG		5mM		209	T: 0.043, 0.043		203	T: 0.529, 0.389
Cv60	F: AGGGTCTGTCAGGGTAAGCA	(GT) ₅ GC(GT) ₅	58 °C	2	223-	P: 0.038, 0.038	5	219-	P: 0.444, 0.489
JF320938	R: TCGCCACTGTCAAATATTGATT		5mM		235	T: 0.043, 0.043		233	T: 0.476, 0.465

Cv95	F: CCGGGGTTAGCCGTTTAG	$(CT)_2CC(CT)_8$	58 °C	4	223-	P: 0.593, 0.612	4	225-	P: 0.368, 0.323
JF320939	R: TTTTTCAAAGCCGCGATAAG		5mM		235	T: 0.261, 0.467		239	T: 0.190, 0.254

127 *following Schuelke (2000), M13(-21) sequence was added to the forward primer for all loci except Cs10

128 **length of M13(-21) tail not included